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Abstract. High-precision analyses are presented for the production of scalar sleptons, selectrons and smuons
in supersymmetric theories, at future e+e− and e−e− linear colliders. Threshold production can be exploited
for measurements of the selectron and smuon masses, an essential ingredient for the reconstruction of the
fundamental supersymmetric theory at high scales. The production of selectrons in the continuum will allow
us to determine the Yukawa couplings in the selectron sector, scrutinizing the identity of the Yukawa and
gauge couplings, which is a basic consequence of supersymmetry. The theoretical predictions are elaborated
at the one-loop level in the continuum, while at threshold non-zero width effects and Sommerfeld rescattering
corrections are included. The phenomenological analyses are performed for e+e− and e−e− linear colliders
with energy up to about 1 TeV and with high integrated luminosity up to 1 ab−1 to cover the individual
slepton channels separately with high precision.

1 Introduction

Supersymmetry [1, 2] provides us with a stable bridge [3]
between the electroweak scale of ∼ 102 GeV where labora-
tory experiments in particle physics are performed, and the
grand unification–Planck scale of ∼ 1016–1019 GeV where
all phenomena observed at low energies are expected to be
rooted in a fundamental theory including gravity. Bridging
more than fourteen orders of magnitude requires a base of
high precision experiments from which the extrapolation
to the Planck scale can be carried out in a solid way. Such
a program has already been pursued very successfully for
the three gauge couplings which appear to unify at the
high scale [4]. A parallel program should be carried out in
supersymmetric theories for the other fundamental param-
eters [5], including the parameters of soft supersymmetry
breaking, which may be transferred from a hidden sector
near the Planck scale by gravitational interactions to our
visible world.

A solid base for these extrapolations can be built by
experiments at high-energy e+e− and e−e− colliders [6–9]
which, if operated with high luminosity, will enable us to
map out a comprehensive and precise picture of the su-
persymmetric sector at the electroweak scale. After the
chargino and neutralino sectors [10,11] have been explored
earlier, we will concentrate in this analysis on the charged
scalar lepton sector of the first and second generation, in
which mixing phenomena are expected to be strongly sup-
pressed1. [The third generation and the neutral sector will
be summarized in two later addendawhile the colored sector

1 For a summary of earlier work on this subject see [7, 12].

will be analyzed in a separate report.] We have elaborated
the processes

e+e− → µ̃+
i µ̃

−
i [i = L,R] (1)

and
e+e− → ẽ+i ẽ

−
j ,

e−e− → ẽ−
i ẽ

−
j [i, j = L,R]

(2)

at the level of one-loop accuracy. At the thresholds we have
calculated the production cross-sections for off-shell parti-
cles including the non-zero width effects and the Coulombic
Sommerfeld rescattering corrections, while in the contin-
uum the supersymmetric one-loop corrections have been
calculated for on-shell slepton production.

The threshold production of smuons, mediated by s-
channel photon and Z-boson exchanges, proceeds through
P-waves, giving rise to the moderately steep β3 behavior
of the cross-sections in the velocity β = (1 − 4m2

µ̃/s)
1/2

of the smuons. The accuracy that can be reached in mea-
surements of the masses mµ̃L,R through threshold scans is
nevertheless competitive with the accuracy achieved in the
continuum by reconstructing the particles through decay
products in the final states. Non-diagonal and diagonal
pairs of selectrons however can be excited in S-waves in
e+e− and e−e− collisions, mediated by t-channel neutralino
exchange, and they give rise to the linear β dependence of
the cross-sections near the thresholds [13]. This steep onset
of the excitation curves allows us to measure the selectron
masses with unrivaled precision.

Selectron production in the continuum is strongly af-
fected by the electron–selectron–gaugino Yukawa couplings
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and, as result, they can be determined very precisely by
measuring the cross-sections for the production processes.
In this way the identity of the Yukawa couplings (ĝ) with
the gauge couplings (g), ĝ = g, a basic consequence of
supersymmetry, can be thoroughly investigated with high
precision, as explored first in [14].

The threshold analyses in this report adopt techniques
outlined earlier in [15]. The one-loop calculations in the con-
tinuum are performed in the dimensional reduction scheme
(DRED) for regularization and with on-shell renormaliza-
tion of masses and couplings. This program must be carried
out consistently for the slepton sector and the neutralino
sector. In the loop corrections all sectors of the electroweak
supersymmetric model contribute, which in general do not
decouple for large supersymmetry breaking masses [16,17].

A remarkable feature is the appearance of anomalous
threshold singularities [18], which show up as discontinu-
ities in the cross-section as a function of the center-of-mass
energy. They are induced by specific mass patterns of the
particles in the loops [19], which are generally expected
to be realized in supersymmetric models but which are
atypical for standard model calculations.

The phenomenological analyses are performed in
the minimal supersymmetric standard model (MSSM),
based on the parameters of the mSUGRA Snowmass Point
SPS1a [20]. They include effects of initial-state beamstrah-
lung radiation as well as the decays of the sleptons. All
contributions are taken into account that lead to the same
final state. They have been elaborated at the level typical
for phenomenological simulations of processes at an e+e−
linear collider in the TeV range. Besides standard model
backgrounds the most important background channels in-
side SUSY are taken into account explicitly. The domi-
nant standard backgrounds, in particular from W+W−,
ZZ and Zγ production, are eliminated a priori by proper
cuts adopted from previous experimental studies [21]. At
the level of precision required here, it is also necessary to
include sub-dominant contributions from off-shell produc-
tion of gauge bosons and SUSY particles.

The final picture is quite exciting: Selectron masses can
be determined at an accuracy of 50 MeV, i.e. in the per-
mille range, while the masses of the less frequently produced
smuons are still accessible at the per-cent level. The same
level of accuracy can also be realized in measurements of
the Yukawa couplings of the selectron sector, thus allowing
for a high precision comparison with the corresponding
gauge couplings. In summa: A high-resolution picture of
the charged slepton sector in the first and second generation
can be drawn by experiments at prospective e+e− and e−e−
linear colliders.

This report is organized as follows. In Sect. 2 we sum-
marize the main features of slepton production and decay
in e+e− and e−e− collisions at the Born level. Section 3
presents the predictions for smuon and selectron produc-
tion at threshold in detail, leading us to the aforementioned
accuracies expected from selectron and smuon mass mea-
surements in threshold scans. In Sect. 4 slepton pair produc-
tion in the continuum is described and exploited finally for
measurements of the Yukawa couplings in the selectron sec-

tor. Partial results had been presented earlier in [22], while
additional technical details can be found in [23]. Spectrum
and properties of supersymmetric particles in the reference
point SPS1a, relevant for the present study, are summa-
rized in the appendix for the sake of completeness and the
reader’s convenience.

2 Basics of smuon and selectron production
and decay

2.1 Notation and conventions

In this report we restrict ourselves to the minimal su-
persymmetric standard model (MSSM) as a well-defined
framework. Since the muon and electron masses are very
small, the mixing among L- and R-smuon and -selectron
states, partners of the left- and right-chiral leptons, can be
neglected and the mass eigen-states correspond to the L,R
eigen-states.

In the other sectors of the MSSM, mixing needs to be
taken into account. The MSSM requires two Higgs dou-
blets Hu and Hd, which both acquire non-zero vacuum
expectation values vu and vd. The fields mix to form the
Goldstone and the physical degrees of freedom with the
mixing angle

tanβ ≡ vu/vd, (3)

given by the ratio of the vacuum expectation values.
The charged higgsinos H̃±

u,d and the winos W̃± mix
to form two charginos χ̃±

i (i = 1, 2), while the neutral
higgsinos H̃0

u,d and the gauginos B̃, W̃ 0 form four neutralino
mass eigen-states χ̃0

i (i = 1, 2, 3, 4).
Apart from the electroweak parameters, the spectrum

of the charginos and neutralinos is described by three mass
parameters, the Higgs/higgsino parameter µ in the super-
potential and the soft SU(2) and U(1) gaugino parame-
ters, M2 and M1, respectively. For the charginos the mass
term reads

Lmχ̃± = −
(
W̃−, H̃−

d

)
X

(
W̃+

H̃+
u

)
+ h.c. (4)

where W̃±, H̃±
u,d are the Weyl spinors of the charged winos

and higgsinos. The mass matrix

X =
(

M2
√

2MW sinβ√
2MW cosβ µ

)
(5)

can be diagonalized by two unitary matrices U and V
according to

U∗XV −1 =

(
mχ̃±

1
0

0 mχ̃±
2

)
,

(
χ−

1
χ−

2

)
= U

(
W̃−

H̃−
d

)
,(

χ+
1
χ+

2

)
= V

(
W̃+

H̃+
u

)
, (6)
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Table 1. Classification of smuon and selectron production modes in terms of the exchanged
particles, the orbital angular momentum of the final-state wave function and the rise of
the excitation curve near threshold. Specific beam polarization states are required for the
individual channels

Process Exchange particles Orbital wave Threshold excitation
e+
L e−

R / e+
Re−

L → µ̃+
Rµ̃−

R / µ̃+
L µ̃−

L γ, Z P-wave ∝ β3

e+
L e−

R → ẽ+
R ẽ−

R γ, Z, χ̃0 P-wave ∝ β3

e+
Re−

L → ẽ+
R ẽ−

R γ, Z P-wave ∝ β3

e+
L e−

R → ẽ+
L ẽ−

L γ, Z P-wave ∝ β3

e+
Re−

L → ẽ+
L ẽ−

L γ, Z, χ̃0 P-wave ∝ β3

e+
L e−

L → ẽ+
R ẽ−

L χ̃0 S-wave ∝ β

e+
Re−

R → ẽ+
L ẽ−

R χ̃0 S-wave ∝ β

e−
Re−

R → ẽ−
R ẽ−

R χ̃0 S-wave ∝ β

e−
L e−

L → ẽ−
L ẽ−

L χ̃0 S-wave ∝ β

e−
L e−

R → ẽ−
L ẽ−

R χ̃0 P-wave ∝ β3

e−

e+

µ−

µ+

γ, Z

e−

e+

e−

e+

γ, Z

e−

e+

e−

e+

χ0
j

a b c

Fig. 1a–c. Generic leading-order diagrams for the
pair production of smuons and selectrons in e+e−

or e−e− scattering

generating the mass eigen-states χ±
i . In the chiral repre-

sentation, the Dirac spinors χ̃±
i of the charginos are con-

structed from the Weyl spinors as follows:

χ̃−
i =

(
χ−

i

χ+
i

)
and χ̃+

i =

(
χ+

i

χ−
i

)
. (7)

The neutralino mass term in the current eigen-basis is
given by

Lmχ̃0 = −1
2
ψ0T

Y ψ0+h.c., ψ0 =
(
B̃, W̃ 0, H̃0

d , H̃
0
u

)T
,

(8)
with the symmetric mass matrix

Y = (9)



M1 0 −MZ sW cβ MZ sW sβ

0 M2 MZ cW cβ −MZ cW sβ

−MZ sW cβ MZ cW cβ 0 −µ

MZ sW sβ −MZ cW sβ −µ 0


 ,

in which the abbreviations sβ = sinβ and cβ = cosβ have
been introduced; sW and cW are the sine and cosine of
the electroweak mixing angle. The transition to the mass
eigen-basis is performed by the unitary mixing matrix N ,

N∗Y N−1 = diag
(
m2

χ̃0
1
,m2

χ̃0
2
,m2

χ̃0
3
,m2

χ̃0
4

)
,

with

χ0
i = Nijψ

0
j . (10)

The Majorana spinors χ̃0
i of the physical neutralinos are

composed of the Weyl spinors as

χ̃0
i =

(
χ0

i

χ0
i

)
. (11)

Explicit analytical solutions for the mixing matrices can
be found in [10]2.

2.2 Production mechanisms

In supersymmetric theories with R-parity conservation
scalar leptons are produced in pairs. Since mixing can be
neglected, the pairs are built of the current eigen-states
with chiral index L or R.

Scalar smuons are produced in diagonal pairs via s-
channel photon and Z-boson exchanges in e+e− collisions;
see Table 1 and Fig. 1a.

Since the intermediate state is a vector, the helicities
of electron and positron must be opposite to each other.
By angular momentum conservation the scalar smuons are
therefore produced in P-wave states. This gives rise to the
characteristic β3 behavior of the excitation curves close to
threshold, with β denoting the velocity of the smuons in
the final state.

The cross-sections for the production of RR- and LL-
smuon pairs by polarized electron/positron beams may be

2 Note that a convention for the chargino mass matrix X
different from (5) is used in [10].
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Fig. 2. Born cross-sections for right- and left-chiral smuon pair
production in unpolarized e+e− annihilation

written as

σ
[
e+R e

−
L → µ̃+

i µ̃
−
i

]
=

2πα2

3s
β3
[
1 + gi gL

s

s−M2
Z

]2

,

(12)

σ
[
e+L e

−
R → µ̃+

i µ̃
−
i

]
=

2πα2

3s
β3
[
1 + gi gR

s

s−M2
Z

]2

,

(13)

with i = L,R and the left- and right-chiral Z couplings

gL =
−1 + 2s2W
2sWcW

, gR =
sW
cW

. (14)

As mentioned before, the polarization combinations with
equal helicity of electron and positron vanish. The electro-
magnetic coupling α may conveniently be defined at the
energy scale

√
s, incorporating properly the running of the

gauge coupling.
The angular distribution of the smuons follows the fa-

miliar sin2 θ rule so that the new particles are produced
preferentially perpendicular to the e+e− beam axis.

The size of the cross-sections for smuons in the
mSUGRA Snowmass point SPS1a runs up to 35 fb and
60 fb for left- and right-chiral pairs; cf. Fig. 2. The cross-
sections generally reach a maximum at s � 10m2

µ̃ , while
for asymptotically large energies they scale as 1/s.

Scalar electrons can be produced, besides the standard
photon and Z-boson s-channel exchanges, via neutralino
χ̃0

j [j = 1, . . . , 4] exchanges in the t-channel, cf. Table 1
and Fig. 1b,c, thereby generating, in addition to the diag-
onal, also non-diagonal L/R pairs. Moreover, diagonal and
non-diagonal selectron pairs can be generated by t-channel
neutralino exchanges in e−e− collisions; see Fig. 1c.

In contrast to the vectorial s-channel amplitudes, the t-
channel neutralino exchanges allow for S-wave production
at the thresholds. To reduce the total angular momentum
to zero, electron and positron beams are required with equal
helicities. If the helicities are opposite, standard vectorial
exchanges give rise to the familiar P-wave states; cf. Table 1.

The S-wave production processes are particularly ap-
pealing for selectron mass measurements in threshold scans
due to the steep onset of the cross-sections ∝ β. In e+e−
collisions only mixed selectron pairs, ẽLẽR, can be produced
in an S-wave, while S-wave production of diagonal selec-
tron pairs, ẽRẽR and ẽLẽL, is possible in the e−e− mode.
Moreover, e−e− collisions provide a nearly background-free
environment for selectron studies.

TheBorn formulae for selectronproductionbypolarized
beams read

σ
[
e+−i e

−
i → ẽ+i ẽ

−
i

]
=

2πα2

3s
β3
[
1 + g2

i

s

s−M2
Z

]2

+
16πα2

s

4∑
j=1

4∑
k=1

|Xij |2 |Xik|2 hjk (15)

+
8πα2

s

4∑
j=1

|Xij |2
[
1 + g2

i

s

s−M2
Z

]
f j

[i = L/R,−i = R/L] ,

σ
[
e+i e

−
−i → ẽ+i ẽ

−
i

]
(16)

=
2πα2

3s
β3
[
1 + gi g−i

s

s−M2
Z

]2

[i = L/R,−i = R/L] ,

σ
[
e+L e

−
L → ẽ+R ẽ

−
L

]
=

16πα2

s

4∑
j=1

4∑
k=1

XLj X
∗
Rj XRk X

∗
Lk H

jk, (17)

σ
[
e+R e

−
R → ẽ+L ẽ

−
R

]
= σ

[
e+L e

−
L → ẽ+R ẽ

−
L

]
,

σ
[
e−
i e

−
i → ẽ−

i ẽ
−
i

]
=

16πα2

s

4∑
j=1

4∑
k=1

X2
ij X

∗2
ik

[
Gjk

+ +Hjk
]

[i = L/R] , (18)

σ
[
e−
L e

−
R → ẽ−

L ẽ
−
R

]
=

16πα2

s

4∑
j=1

4∑
k=1

X∗
Lj X

∗
Rj XLk XRk h

jk,

(19)

with

f j = ∆jβ − ∆2
j − β2

2
ln
∆j + β

∆j − β
, (20)

hjk =


−2β +∆j ln

∆j + β

∆j − β
j = k,

fk − f j

∆j −∆k
j �= k,

(21)

Gjk
± =

2
s

mχ̃0
j
mχ̃0

k

∆j ±∆k

[
ln
∆k + β

∆k − β
± ln

∆j + β

∆j − β

]
, (22)
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Hjk =


4β
s

m2
χ̃0

j

∆2
j − β2 j = k,

Gij
− j �= k,

(23)

where for the case of diagonal selectron pairs, ẽRẽR and
ẽLẽL,

∆j =
2
s

(
m2

ẽi
−m2

χ̃0
j

)
− 1 and β =

√
1 − 4m2

ẽi
/s,

(24)
while for mixed pairs

∆j =
1
s

(
m2

ẽL
+m2

ẽR
− 2m2

χ̃0
j

)
− 1

and

β =
1
s

√(
s−m2

ẽL
−m2

ẽR

)2 − 4m2
ẽL
m2

ẽR
)2. (25)

The matrix

Xij = [(cW + gisW)Nj1 + (sW − gicW)Nj2] /
√

2 (26)

accounts for the neutralino mixing with N being the neu-
tralino mixing matrix; see (10).

Since the higgsino components of the neutralino states
couplewith the small electronmass to the electron-selectron
system, the exchange mechanism automatically projects on
the gaugino components of the neutralino wave functions.
The exchange of relatively light neutralinos with domi-
nant gaugino components in the t-channel leads in general
to large production cross-sections. Only if the neutralinos
mass is nearly zero, the contributions associated with a Ma-
jorana mass insertion in the t-channel of amplitudes with
zero total spin is suppressed. In the reference point SPS1a,
however, the masses of the gaugino-like neutralinos are suf-
ficiently large, being of the order of the slepton masses, to
generate large cross-sections in all selectron channels.

A typical set of selectron production cross-sections is
shown in Fig. 3a,b for e+e− and e−e− collisions, respec-
tively. As expected, the t-channel neutralino exchange en-
hances the cross-sections considerably. The cross-sections
exceed smuon production by about an order of magnitude.

The angular sparticle distributions for the various pro-
duction processes and polarized beams read

dσ
dΩ

[
e+−i e

−
i → ẽ+i ẽ

−
i

]
=
α2

4s
β3 sin2 θ

[
1 + g2

i

s

s−M2
Z

]2

(27)

+
4α2

s
β3

4∑
j=1

4∑
k=1

|Xij |2 |Xik|2 sin2 θ

[∆j − β cos θ] [∆k − β cos θ]

+
2α2

s
β3

4∑
j=1

|Xij |2
[
1 + g2

i

s

s−M2
Z

]
sin2 θ

∆j − β cos θ

[i = L/R,−i = R/L] ,

a
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σ
[f
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√
s [GeV]
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ẽ−L ẽ−L

e−e− → ẽ−ẽ−

Fig. 3a,b. Born cross-sections for selectron pair production in
unpolarized e+e− a and e−e− b collisions

dσ
dΩ

[
e+i e

−
−i → ẽ+i ẽ

−
i

]
=
α2

4s
β3 sin2 θ

[
1 + gi g−i

s

s−M2
Z

]2

[i = L/R,−i = R/L] , (28)

dσ
dΩ

[
e+L e

−
L → ẽ+R ẽ

−
L

]
=

16α2

s
β (29)

×
4∑

j=1

4∑
k=1

XLj X
∗
Rj XRk X

∗
Lk

mχ̃0
j
mχ̃0

k
/s

[∆j − β cos θ] [∆k − β cos θ]
,

dσ
dΩ

[
e+R e

−
R → ẽ+L ẽ

−
R

]
=

dσ
dΩ

[
e+L e

−
L → ẽ+R ẽ

−
L

]
,

dσ
dΩ

[
e−
i e

−
i → ẽ−

i ẽ
−
i

]
=

16α2

s
β

×
4∑

j=1

4∑
k=1

X2
ij X

∗2
ik

4∆j∆k mχ̃0
j
mχ̃0

k
/s[

∆2
j − β2 cos2 θ

]
[∆2

k − β2 cos2 θ]

[i = L/R] , (30)

dσ
dΩ

[
e−
L e

−
R → ẽ−

L ẽ
−
R

]
=

4α2

s
β3 (31)

×
4∑

j=1

4∑
k=1

X∗
Lj X

∗
Rj XLk XRk

sin2 θ

[∆j − β cos θ] [∆k − β cos θ]
,
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with θ being the angle between the incoming e− and the
outgoing ẽ− particles and ∆j defined in (24) and (25), re-
spectively.

Near the thresholds the angular sparticle distributions
are ∝ sin2 θ for P-waves, while S-wave distributions are
isotropic. With rising center-of-mass energy, the t-channel
neutralino exchange however accumulates the selectrons
in the forward and backward directions as the exchange
amplitudes peak near cos θ ≈ ± 1:

dσ
d cos θ

[
e+ e− → ẽ+i ẽ

−
i

]
(32)

∝
∑
j,k

1 − cos2 θ
[∆j − β cos θ] [∆k − β cos θ]

s�m2
ẽi−→ 1 + cos θ

1 − cos θ
,

dσ
d cos θ

[
e+ e− → ẽ±

R ẽ
∓
L

]
(33)

∝
∑
j,k

1
[∆j − β cos θ] [∆k − β cos θ]

s�m2
ẽi−→ 1

(1 − cos θ)2
.

2.3 Decay mechanisms

The R-sleptons µ̃R and ẽR are expected to decay predom-
inantly into the lightest neutralino if the latter has a dom-
inant bino component: l̃±R → l±χ̃0

1.
The dominant decay modes of the L-sleptons µ̃L and ẽL

in the SPS1a scenario are also expected to be decays to the
lightest neutralino. However, additional heavy neutralino
cascade decays and decays to charginos generate more com-
plicated final states [24]. The tree-level decay widths for
these two-particle decays are given by

Γ
[
l̃−i → l− χ̃0

j

]
= α |Xij |2 ml̃i

(
1 −

m2
χ̃0

j

m2
l̃i

)2

(34)

[i = L/R, j = 1, . . . , 4] ,

Γ
[
l̃−L → νl χ̃

−
k

]
=
α

4
|Uk1|2ml̃L

1 −
m2

χ̃±
j

m2
l̃L

2

[k = 1, 2], (35)

where X denotes the matrix defined in (26), while U is the
chargino mixing matrix defined in (6).

Masses, widths and branching ratios for the reference
point SPS1a [20, 24] are collected in Table 2. While R-
sleptons decay almost exclusively into light neutralinos plus
leptons, the same decay modes are also dominant for L-
sleptons. Due to the fairly large value of tanβ and, as a
result, the significant stau mixing, charginos χ̃±

1 and the χ̃0
2

neutralinos decay primarily to τ final states, so that their
experimental analysis is more demanding. As significant
rates are predicted for the decay modes of the sleptons into
χ̃0

1, we will focus the subsequent phenomenological analyses
to these exceedingly clear channels: the final states are
oppositely charged leptons plus missing energy, e+e− →
l+l− + E/ . Decays to χ̃0

2 with subsequent τ decays can

Table 2. Masses, widths and branching ratios of smuons, se-
lectrons and the light neutralino and chargino states for the
reference points SPS1a [20,24]

Sparticle Mass m [GeV] Decay modes
Width Γ [GeV]

l̃R = ẽR/µ̃R m = 142.72 l̃−R → l− χ̃0
1 100%

Γ = 0.21
l̃L = ẽL/µ̃L m = 202.32 l̃−L → l− χ̃0

1 48%
Γ = 0.25 → l− χ̃0

2 19%
→ νl χ̃−

1 33%
χ̃0

1 m = 96.18 —
χ̃0

2 m = 176.62 χ̃0
2 → ẽ±

R e∓ 6%
Γ = 0.020 → µ̃±

R µ∓ 6%
→ τ̃±

1 τ∓ 88%
→ q q̄ χ̃0

1 0.1%
χ̃±

1 m = 176.06 χ̃+
1 → τ̃+

1 ντ 100%
Γ = 0.014

nevertheless be exploited to discriminate between L- and
R-sleptons.

3 Slepton production at threshold
and mass measurements

Smuonpairs are produced in e+e− annihilation near thresh-
old in P-waves as a result of angular momentum conserva-
tion for spin-1 photon and Z-boson s-channel exchanges.
This leads to the β3 behavior of the excitation curve in the
velocity of the produced particles. In contrast, t-channel
neutralino exchanges can give rise to a steep linear beta
dependence of the excitation curves for selectrons in e+e−
and e−e− collisions, characteristic for states with zero total
angular momentum.

These rules are valid at the Born level but they are mod-
ified by the non-zero widths of the produced resonances and
by Sommerfeld rescattering effects generated by Coulom-
bic photon exchange between the slowly moving final-state
particles [15]. While the non-zero widths smear out the on-
set of the threshold excitation curves, Coulombic photon
exchange enhances the cross-section near threshold. For
on-shell particle production, the Coulomb correction fac-
tor is singular, ∝ β−1, so that the excitation curves are
enhanced to β2 for P-waves and they jump to non-zero val-
ues for S-waves. For the production of unstable particles,
this singular behavior is alleviated by the off-shellness and
finite width effects.

Moreover, studying off-shell production of sleptons, the
calculation has to be performed for the final states after
the decays of the resonances. Restricting ourselves to the
simplest neutralino χ̃0

1 and χ̃0
2 decay modes, the processes

e+e− → µ+µ− χ̃0
1 χ̃

0
1 (36)

and

e+e− → e+e− χ̃0
1,2 χ̃

0
1,2, (37)
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Fig. 4a,b. The doubly and singly resonant contributions to the process e+e− → µ+µ−χ̃0
1χ̃

0
1

e−e− → e−e− χ̃0
1,2 χ̃

0
1,2 (38)

must be analyzed including all channels which give rise to
these final states.

The decay of L-sleptons into the next-to-lightest neu-
tralino χ̃0

2 with the subsequent decay χ̃0
2 → τ+τ−χ̃0

1 (cf.
Table 2) can be used to distinguish them from R-sleptons,
which predominantly decay into the lightest neutralino χ̃0

1,
i.e. l̃±R → l± χ̃0

1. This is of particular importance since in
most scenarios the R-sleptons are expected to be lighter
than the corresponding L-sleptons, so that the L-sleptons
are produced on top of a huge background of R-sleptons.
For scenarios with tanβ � 10, the χ̃0

2 mainly decays into a
τ pair and the lightest neutralino, so that the production
of an L-slepton is signaled by the appearance of additional
τ jets.

The small cross-section for L-smuon production to-
gether with the branching ratio for µ̃±

L → µ± χ̃0
2 results

in expected event rates that are too low to perform a mea-
surement of the threshold excitation curve. Therefore, only
R-smuons, but selectrons of both L- and R-type will be an-
alyzed in detail.

3.1 Off-shell slepton production

The leading contribution to the µ+µ− χ̃0
1 χ̃

0
1 final state, and

to electron final states correspondingly, is generated by the
double-resonance diagram shown in Fig. 4a. For invariant
µχ̃0

1 masses near the smuon mass, the smuon propagators
must be replaced by the Breit–Wigner form, which explic-
itly includes the non-zero width Γµ̃ of the resonance state.
This is achieved by substituting the complex parameter

m2
µ̃ → M2

µ̃ = m2
µ̃ − imµ̃Γµ̃ (39)

for the smuon mass. To keep the amplitude gauge invariant,
the double-resonance diagram of Fig. 4a must be supple-
mented by the single-resonance diagrams of Fig. 4b.

3.2 Coulombic Sommerfeld correction

The Coulomb interaction due to photon exchange between
slowly moving charged particles in Fig. 5 gives rise to large
corrections to the excitation curve near threshold. For sta-
ble particles the cross-section is modified universally by the

e−

e+

µ−

µ+

χ0
1

χ0
1

µ−

µ+

γ, Z
γ

Fig. 5. Coulomb correction to smuon production, e+e− →
µ+µ−χ̃0

1χ̃
0
1

singular coefficient σBorn → (απ/2β)σBorn at leading order.
This Sommerfeld correction [25] removes one power of the
velocity β off the threshold suppression. For the produc-
tion of off-shell particles the singularity is screened [26] and
the remaining enhancement depends on the orbital angular
momentum l. The Coulomb correction is associated with
the leading term in the β expansion of the photon exchange
diagram Fig. 5. Exploiting the fact that terms with the loop
momentum in the numerator generate terms proportional
to β in the diagrammatic analysis, it follows that

σoff−shell
Coul = −σBorn

αs

2π
C0 	e

(
2p+p− − 2M2

X

2p+p− − p2
+ − p2−

)l

,

(40)
for the complex pole masses M2

± = m2
± − im±Γ± and the

momenta p± of the slepton l̃±, l̃ = ẽ, µ̃. The leading part
in β of the scalar triangle function C0 can be evaluated
according to [27]. The last factor, taken to the lth power, is
of kinematical origin, incorporating the effect of the angular
momentum l of the wave function.

After carrying out the expansion for smuon and selec-
tron P-wave production and for selectron S-wave produc-
tion, the leading order can be written in the form

σCoul = σBorn
απ
2βp

[
1− 2

π
arctan

|βM |2 − β2
p

2βp 
mβM

]

× 	e

[
β2

M + β2
p

2β2
p

]l

[l = 0, 1], (41)

with the generalized velocities

βM =
1
s

√
(s−M2

+ −M2−)2 − 4M2
+M

2−, (42)
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Table 3. General cuts to reduce large standard model backgrounds and to account for the detector geometry and resolution

Condition Variable Accepted range

Reject leptons in forward/backward region from
Bhabha/Møller scattering

lepton polar angle θl | cos θl| < 0.95

Reject soft leptons/jets from radiative photon splitting
and γ–γ background

lepton/jet energy El El > 5 GeV

Reject missing momentum in forward/backward region
from particles lost in the beam pipe

missing momentum polar angle θpmiss | cos θpmiss | < 0.90

Angular separation of two leptons angle φl+l− between leptons |1 − cos φl+l− | > 0.002

Angular separation of two quark or tau jets angle φjj between jets |1 − cos φjj| > 0.015

Cut on Z decaying into lepton pair di-lepton invariant mass ml+l− |ml+l− − MZ | > 10 GeV

Cut on invisibly decaying Z invariant recoil mass mrecoil |mrecoil − MZ | > 15 GeV

Reject back-to-back leptons from W pairs angle φl+l− between leptons | cos φl+l− | < 0.7
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e+e− → l̃+R l̃−R

Fig. 6. Correction factor ∆corr due to Coulomb rescattering
relative to the Born cross-section for on-shell and off-shell S-
and P-wave production

βp =
1
s

√
(s− p2

+ − p2−)2 − 4p2
+p

2−. (43)

The off-shellness damps the singularities as illustrated in
Fig. 6 for the S- and P-waves.

3.3 Final-state analysis

The final states in the general processes e+e− → l+l− +E/
and e+e− → l+l− τ+τ− + E/ can be generated by a large
variety of background processes in addition to the sig-
nal slepton channels. Within the SUSY sector itself, pair
production of charginos and neutralinos with subsequent
(cascade) decays feed the final state l+l− + E/ . ZZ and
Zh0/ZH0 intermediate states with one particle decay-
ing to lepton pairs, the other to a pair of χ̃0

1 will also
contribute to this class of final states. The final state
with an additional tau pair is characteristic for the pro-
duction of a L-slepton together with a R-slepton. SUSY
backgrounds to this signature arise from neutralino pro-
duction or from stau τ̃ production with the decay chain
e+e− → τ̃+τ̃− → τ+τ− χ̃0

2 χ̃
0
1 → τ+τ− e+e− χ̃0

1 χ̃
0
1.

Moreover, pure standard model processes, like the pro-
duction of gauge bosonpairs,W+W−,ZZ andZγ∗, leading

to the final state l+l−νν̄, also have to be taken into account.
They are generically large and need to be reduced by appro-
priate cuts [28]. The background from resonant Z produc-
tion can easily be reduced by cutting on the invariant mass
of the lepton pair or the invisible recoil momentum around
the Z-pole. Contributions from WW pair production have
a characteristic angular distribution of the final-state lep-
tons. Because of the spin correlations and the boost factor,
the leptons tend to be aligned back to back and along the
beam direction. Therefore this background can be reduced
effectively by rejecting signatures with back-to-back lep-
tons. The explicit values for the cuts are summarized in
Table 3.

Triple gaugebosonproduction,W+W−Z andW+W−γ∗,
contributes to the final state e+e− → l+l− τ+τ− +E/ . The
total cross-section for these processes is well below 1 fb [29]
and can be reduced further by applying cuts on the invari-
ant di-lepton mass.

The dominant supersymmetric backgrounds involve de-
cay cascades of neutralinos and charginos that, for example
following the decay chain

e+e− → χ̃0
1 χ̃0

j

�→ l+ l− χ̃0
1, (44)

with j > 1, generate l+l− + E/ final states. Since the lep-
ton pair originates only from a single neutralino decay,
these backgrounds give rise to increased missing energy
and lower lepton pair invariant mass compared to the sig-
nal, and they can effectively be reduced by cuts on these
two variables [15]. Near threshold an alternative method
for reducing the backgrounds can be applied, based on
the fact that the energy of the leptons originating from
a two-body decay is defined sharply in this kinematical
configuration. Thus by selecting leptons with energies in a
band ∆E ≈ 10 GeV around the nominal threshold energy
El,thr = (m2

l̃
− m2

χ̃0
j
)/(2ml̃) greatly suppresses both SM

and SUSY backgrounds. This second cut choice is applied
in the following examples.

The signal-to-background ratio can further be enhanced
by using beam polarization. The optimal polarization
choices for the different production processes are listed in
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R ẽ−R Production

e+ e− → e+e−+ �E :
Pe− = +80%, Pe+ = −50%

bkgd.
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Fig. 7. The excitation curves for ẽR pair production over standard model and supersymmetric backgrounds for e+e− annihilation
(left) and e−e− scattering (right). The signal contribution with non-zero widths and Coulomb rescattering is compared with
the case of zero width and no higher order corrections. The signal is enhanced with beam polarization as indicated, where (+)
corresponds to right-handed and (−) to left-handed polarization

Table 4. Expected precision for the determination of slepton masses and widths from
threshold scans in e+e− and e−e− scattering. The reconstructed values are obtained from
a four-parameter fit as outlined in the text

Process Fitted values for slepton mass m and width Γ

e+e− → (ẽ+
R ẽ−

R) → e+e− + E/ mẽR = 142.8+0.21
−0.19 GeV ΓẽR = 150+300

−250 MeV
e−e− → (ẽ−

R ẽ−
R) → e−e− + E/ mẽR = 142.70+0.048

−0.053 GeV ΓẽR = 200+50
−40 MeV

e+e− → (ẽ±
R ẽ∓

L ) → e+e− τ+τ− + E/ mẽL = 202.2+0.37
−0.33 GeV ΓẽL = 240+20

−20 MeV
e−e− → (ẽ−

L ẽ−
L ) → e−e− ττττ + E/ mẽL = 202.1+0.62

−0.44 GeV ΓẽL = 240+500
−240 MeV

e+e− → (µ̃+
Rµ̃−

R) → µ+µ− + E/ mµ̃R = 142.8+0.42
−0.38 GeV Γµ̃R = 350+400

−400 MeV

Table 1. As is evident from the table, polarization of both
the electron and positron beams can help to discriminate
between the slepton chiralities (see e.g. [30]). In the follow-
ing 80% polarization for the electrons and 50% polarization
for the positrons is assumed. Without positron polarization
the signal-to-background ratio would in general be reduced
by a factor of 1.5.

For a realistic description, it is necessary to include
initial-state radiation (ISR)andbeamstrahlungeffects.The
leading logarithmic ISR contributions are included using
the structure-function method [31], while effective beam-
strahlung parameterizations, taken for the Tesla design for
definiteness, are adopted from the program Circe [32].

Including the SUSY and SM backgrounds, the excita-
tion curves, after the beamstrahlung and ISR is switched
on and the cuts defined before are applied, are displayed
in Fig. 7 for two characteristic examples, ẽ+R ẽ

−
R pair pro-

duction in e+e− collisions as a P-wave process, and ẽ−
R ẽ

−
R

pair production in e−e− collisions as a typical S-wave pro-
cess. Separately shown are the zero-width Born prediction,
the background contributions and the final prediction in-
cluding non-zero width and rescattering effects, with the
backgrounds added on.

The results expected fromthese simulations for themass
measurements are presented in Table 4. They are based on

data simulated at five equidistant points in a center-of-
mass energy range of 10 GeV in the threshold regions for
µ̃R pair production, and diagonal and non-diagonal ẽR and
ẽL production. For the e+e− mode a total luminosity of
50 fb−1 for each threshold scan is assumed, corresponding
to 10 fb−1 per scan point. In the e−e− mode the anti-pinch
effect leads to a somewhat reduced machine luminosity.
Therefore it is presumed that a total of 5 fb−1 is available
for each scan measurement, corresponding to 1 fb−1 per
scan point. For the reconstruction of the mass a binned
likelihood method is employed, using four free parameters
in the fit: the slepton mass and width, a constant scale
factor for the absolute normalization of the excitation curve
and a constant background level3. The last two parameters
render the mass fit independent on details of other SUSY
sectors, in particular the masses and mixings of the heavier
neutralinos that are not accessible in the slepton decays.

Evidently, S-wave ẽR production in e−e− collisions pro-
vides us with mass measurements of 50 MeV, i.e. a relative
error of less than 1 per-mille. This will presumably be the
highest accuracy that can ever be reached for sfermion mass
measurements in the supersymmetric particle sector.

3 Since the remaining backgrounds after cuts are flat, they
can effectively be approximated by a constant.
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4 Slepton production in the continuum
and determination of Yukawa couplings

The motivation for high precision analyses of smuon and
selectron production in the continuum is twofold, different
though for the two species.
(1.) Smuon pair production in the continuum serves as a
rich source of particles which after subsequent decays to
muons and neutralinos allows us to determine the smuon
and neutralino masses. The smuon mass measurement in
the continuum is competitive with the accuracy expected
from threshold scans. The R-smuon decay to the light-
est neutralino will be the gold-plated process (besides the
analogous R-selectron decay) for measuring the mass of the
lightest neutralino, which is a key particle in cosmology.
Smuon pair production leads to clean µ+µ−+E/ final states
that can easily be identified and controlled experimentally.
The measurement of the cross-sections therefore provides a
valuable instrument for testing supersymmetry dynamics
at the quantum level.
(2.) Since the precision of threshold scans in mass measure-
ments of selectrons cannot be rivaled, the central target
of selectron pair production in the continuum, besides the
neutralino mass measurement [21, 33], is the analysis of
the selectron–electron–neutralino Yukawa couplings in the
SU(2) and U(1) sectors [16]. They are predicted to be equal
to the corresponding gauge couplings in supersymmetric
theories, even if the supersymmetry breaking is included by
soft terms in the Lagrangian, leaving the system theoreti-
cally self-consistent. The relevant mechanism involves the
t-channel exchange of neutralinos. Knowledge of the neu-
tralino masses and mixing parameters is therefore required
before high-sensitivity tests can be carried out. Thus this
method is one of the components in a complex experimental
program including, in addition to the analysis of selectron
pair production, also pair production of charginos and neu-
tralinos that in turn are (partly) mediated by neutral and
charged slepton t-channel exchanges. The synopsis of all
these channels will finally provide us with a comprehen-
sive and detailed picture of the entire Yukawa sector in a
model-independent form.

We will separate in this report the description of the
theoretical techniques necessary for controlling the higher-
order corrections, from the application to smuon and se-
lectron pair production and their phenomenological evalu-
ation, with emphasis on the analysis of Yukawa couplings.

4.1 Renormalization of the MSSM

At the one-loop level, which we work out in this report for
slepton production, dimensional reduction (DRED) pro-
vides us with a valid regularization scheme including chi-
ral currents4. By reducing the kinematics in the propa-
gation of particles to D < 4 dimensions but leaving the

4 For the production of smuons, involving only gauge cou-
plings at tree level, the calculation has been repeated indepen-
dently in dimensional regularization and perfect agreement has
been found [23].

number of field components unchanged, supersymmetry is
preserved in the higher-order amplitudes, and so is gauge
invariance [34].

Multiplicative renormalization of masses, couplings and
fields can therefore be performed without introducing addi-
tional ad-hoc counterterms to restore the supersymmetry.
The renormalization factors Z, and equivalently the shifts
of variables, that absorb all the ultra-violet divergences,
will be fixed by on-shell renormalization, i.e. the on-shell
definition of the physical particle masses, the on-shell defi-
nition of the electromagnetic gauge couplings in the trilin-
ear lepton-lepton-photon vertex, and normalization of the
on-shell renormalized fields to unity. As a consequence of
supersymmetry and gauge symmetry, the renormalization
of all other quantities, Yukawa couplings, quartic couplings
etc., induces calculable additional shifts. This program can
be carried out consistently in theories including soft super-
symmetry breaking terms5.

Characteristic classes of higher-order diagrams for prop-
agators and vertices are depicted in Fig. 8. Additional box
diagrams, cf. Fig. 9, finally conclude the set of elements
contributing to the 2-2 transitions6.

After carrying out the renormalization program in the
ultraviolet sector, infrared and collinear divergences asso-
ciated with the massless photon and lepton fields can be
absorbed by adding the real photon emission contributions;
see Fig. 10. Finite results are automatically guaranteed by
proceeding to experimentally well-defined cross-sections,
i.e. the total cross-sections in the present analysis.

Due to large number of diagrams involved, the use of
computer algebra tools for the computation is necessary.
The generation of diagrams and amplitudes is performed
with the package FeynArts [36]. Throughout the calcula-
tion, theCKMmatrix is taken diagonal andmixing between
the sfermions of the first two generations is neglected. For
the third generation sfermions, the mixing between the L-
and R-states is consistently taken into account. A general
covariant Rξ gauge is used in order to facilitate an ad-
ditional check of the result. Using the program FeynCalc
2.2 [37], the Lorentz and Dirac algebra is evaluated and the
loop integrals are reduced to a set of fundamental scalar
one-loop functions [38]. Since the explicit analytical expres-
sions of the virtual loop contributions are generally very
lengthy, they have been implemented into a computer code
that calculates the one-loop-corrected cross-sections, using
the package LoopTools [39] for the numerical evaluation of
the basic scalar one-loop functions.

4.1.1 Gauge sector

The extension of the standard model to a supersymmetric
theory in minimal form (MSSM) does not introduce new

5 More information about the renormalization of the MSSM
and a general overview of different renormalization techniques
can be found in [35].

6 Most of the analytical results for self-energy operators etc.
are too lengthy to be presented in this report; therefore com-
puter codes for the calculation of the loop results are made
available on the web, cf. the concluding remarks in Sect. 5.
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Fig. 8. Generic sets of Feynman diagrams for the virtual self-energy and vertex corrections to slepton production. Solid, dashed
and wiggly lines indicate fermions, (Higgs) scalars and vector bosons, respectively, whereas sfermions and gauginos are denoted
by double lines and wiggly/solid lines. The selectron–electron–neutralino vertex in the last line only contributes to selectron
production
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Fig. 9. Box-type Feynman diagrams for slepton pair production. The first row a applies both to smuon and selectron production,
while the second row b only contributes to selectron production
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Fig. 10a,b. Feynman diagrams for real photon emission in smuon production a and selectron production a+b

couplings in the gauge/gaugino sector. The gauge sector
of the MSSM is therefore renormalized in parallel to the
standard model. Just the self-energies are expanded by the
contributions of the supersymmetric fields in a straightfor-
ward way. We briefly summarize the results, adopting the
standard conventions of [40].

The masses of theW and Z gauge bosons are shifted by

M2
W → M2

W + δM2
W and M2

Z → M2
Z + δM2

Z . (45)

Imposing the on-shell renormalization conditions defined
earlier, the mass shifts can be expressed in terms of the
transverse self-energies ΣT,

δM2
W = 	e ΣWW

T (M2
W ) and δM2

Z = 	e ΣZZ
T (M2

Z),
(46)

with the self-energies for the gauge boson propagation in
the standard model expanded by supersymmetric parti-
cle contributions:

ΣV1V2
T (k2) = ΣV1V2

T (k2)
∣∣∣
SM

+ ΣV1V2
T (k2)

∣∣∣
SUSY

[Vi = γ,Z,W]. (47)

The first term includes the usual standard model loop
contributions as in the first line of Fig. 8, while the second
term accounts for the additional loops involving pairs of
supersymmetric fields, gaugino and sfermion fields, as given
in the second line of Fig. 8.

The SU(2) and U(1) gauge couplings g and g′ can be
traced back to the electromagnetic coupling e and the elec-
troweak weak mixing angle sW = sin θW. e is renormalized
as in standard QED apart from the removal of γ–Z mixing,

e → (1 + δZe) e

with

δZe =
1
2
∂Σγγ

T (k2)
∂k2

∣∣∣∣
k2=0

− sW
cW

ΣγZ
T (0)
M2

Z

. (48)

Again the gauge boson self-energies decompose into stan-
dard model and specific supersymmetric contributions as
in (47).

Introducing the electroweak mixing angle in the on-
shell definition through the W and Z masses as s2W =
1−M2

W /M2
Z , the renormalized value is formally related to

the bare value by

sW → sW + δsW,

with

δsW
sW

=
c2W
2s2W

[
δM2

Z

M2
Z

− δM2
W

M2
W

]
. (49)

Finally, the renormalized left- and right-handed electron
fields,

eL →
(

1 +
1
2

δZeL
)
eL,

eR →
(

1 +
1
2

δZeR
)
eR, (50)

are related to the electron self-energies by

δZeL = −	e
{
ΣeL(m2

e) (51)

+ m2
e

∂

∂p2

[
ΣeL(p2) +ΣeR(p2) + 2/meΣ

eS(p2)
]
p2=m2

e

}
,

δZeR = −	e
{
ΣeR(m2

e) (52)

+ m2
e

∂

∂p2

[
ΣeL(p2) +ΣeR(p2) + 2/meΣ

eS(p2)
]
p2=m2

e

}
,

with the decomposition

Σe(p) = p/ωLΣ
eL(p2) + p/ωRΣ

eR(p2) +ΣeS(p2),

with

ωL,R = (1 ± γ5)/2. (53)

Apart from the calculation of the (singular) QED correc-
tions, the chiral limit of vanishing electron mass can be
safely applied, simplifying (51) and (52) to

δZeL
weak = −	e ΣeL

weak(0), δZeR
weak = −	e ΣeR

weak(0).

(54)

4.1.2 Sfermion sector

In the limit of vanishing lepton masses in the first and sec-
ond generation, the L- and R-selectron and smuon fields do
not mix and the mass matrices are approximately diagonal.
The “chiral” L- and R-states coincide with the mass eigen-
states. This remains true in higher orders as the sfermion
mixing is proportional to the associated lepton mass. The
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L- and R-fields may therefore be treated independently so
that the renormalization follows the standard procedure.
With

m2
l̃i

→ m2
l̃i

+ δm2
l̃i

and

l̃i →
(

1 +
1
2

δZ l̃
i

)
l̃i [l = e, µ; i = L,R] , (55)

we find for the sfermion mass shift

δm2
l̃i

= 	eΣ l̃
i(m

2
l̃i
), (56)

and for the wave-function renormalization

δZ l̃
i = −	e

∂Σ l̃
i(k

2)
∂k2

∣∣∣∣∣
k2=m2

l̃i

. (57)

Here Σ l̃
i(k

2) denotes the self-energy for the slepton l̃i;
l = e, µ; i = L,R. Since the external fields are superpart-
ners, the slepton self-energies cannot be separated into a
standard model and a genuinely supersymmetric part.

Note that the mass shift and wave-function renormal-
ization for L-sneutrinos coincide with those of L-selectrons
in the chiral limit we consider in this report.

4.1.3 Chargino and neutralino sector

The spectrum of two charginos and four neutralinos in
the MSSM is described by the three mass parameters µ,
M2 and M1; see Sect. 2.1. Apart from other electroweak
parameters, the system is also affected by the Higgs mixing
tanβ. Three chargino/neutralino masses are sufficient to fix
the mass parameters µ, M2 and M1. The renormalization
of tanβ is performed outside the chargino and neutralino
sector, as will be discussed in Sect. 4.1.4

The other three masses and the mixing parameters are
then uniquely determined once the parameters in the loop
corrections are known [41, 42]. Following [41], the renor-
malization is performed in the current eigen-basis.
(1.) Starting from the chargino Lagrangian

Lch = i
[
ψ−T

σµ∂µ ψ− + ψ+T
σ̄µ∂µ ψ

+
]

−
[
ψ−T

X ψ+ + ψ+T
X† ψ−

]
, (58)

with the current fields

ψ+ ≡
(
ψ+

1
ψ+

2

)
=
(
W̃+

H̃+
u

)
, ψ− ≡

(
ψ−

1
ψ−

2

)
=
(
W̃−

H̃−
d

)
, (59)

the mass matrix X is renormalized by

X → X + δX,

with

δX =
(

δM2
√

2 δ (MW sinβ)√
2 δ (MW cosβ) δ µ

)
, (60)

and the current fields are replaced by the normalized mass
eigen-fields χ±,

ψ+ → V †
(

1 +
1
2

δZ̃L
)
χ+, ψ− → U†

(
1 +

1
2

δZ̃R
)
χ−.

(61)
Besides the renormalization of the new parameters µ and
M2, δX includes the renormalization of tanβ and the W
mass discussed earlier. The [infinite] multiplicative renor-
malization of the wave functions is absorbed in the ma-
trices δZ̃L, δZ̃R, and so is the [finite] renormalization of
the matrices V,U rotating the current to the mass fields.
The renormalized chargino Lagrangian and the associated
counterterms may be written in the form

Lch → Lch + δLch,

Lch =
(
χ̃+

1 , χ̃
+
2

) [
i∂/− U∗XV † ωL − V X†UTωR

](χ̃+
1
χ̃+

2

)
,

(62)

δLch =
(
χ̃+

1 , χ̃
+
2

)
×
[
i
∂/

2

(
δZ̃L†

+ δZ̃L
)
ωL + i

∂/

2

(
δZ̃R∗

+ δZ̃RT
)
ωR

−
(

1
2

δZ̃RT
U∗XV † +

1
2
U∗XV †δZ̃L + U∗δXV †

)
ωL

−
(

1
2

δZ̃L†
V X†UT +

1
2
V X†UTδZ̃R∗

+ V δX†UT
)
ωR

]
×
(
χ̃+

1
χ̃+

2

)
. (63)

The physical χ± masses can be introduced in (62) after di-
agonalizing this part of the Lagrangian by rotation through
U, V . The counterterms δµ and δM2 can thereby be ad-
justed such that the propagator matrix develops poles at
the on-shell chargino masses mχ̃±

1,2
. In addition, the Z̃L,R

factors can be uniquely fixed by requiring that the prop-
agator matrix is diagonal and that the pole residues are
normalized to unity for on-shell momenta.
(2.) The analogous program can be carried out in the neu-
tralino system, though the doubling of degrees of freedom
renders the analysis more cumbersome. The bilinear part
of the neutralino Lagrangian in the current eigen-basis is
given by

Ln =
i
2

[
ψ0T

σµ∂µ ψ0 + ψ0T
σ̄µ∂µ ψ

0
]

− 1
2

[
ψ0T

Y ψ0 + ψ0T
Y † ψ0

]
, (64)

with ψ0 and Y given in (8) and (9), respectively. In this
representation the renormalization of the mass matrix Y
is defined as

Y → Y + δY,

with
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δY = (65)



δM1 0 −δ(MZ sW cβ) δ(MZ sW sβ)

0 δM2 δ(MZ cW cβ) −δ(MZ cW sβ)

−δ(MZ sW cβ) δ(MZ cW cβ) 0 −δµ

δ(MZ sW sβ) −δ(MZ cW sβ) −δµ 0




,

while the renormalization and the rotation from current
fields ψ0 to mass eigen-spinors χ0 can be performed as

ψ0 → N†
(

1 +
1
2

δZ̃0
)
χ0. (66)

The matrix δZ̃0 absorbs the multiplicative renormaliza-
tion of the current fields as well as the renormalization
of the rotation matrix. Thus the renormalized neutralino
Lagrangian can be cast into the form

Ln → Ln + δLn,

Ln =
1
2

(
χ̃0

1, χ̃
0
2

) [
i∂/−N∗Y N† ωL −NY †NTωR

]
×
(
χ̃0

1

χ̃0
2

)
, (67)

together with the counterterms

δLn =
1
2

(
χ̃0

1, χ̃
0
2

)
×
[
i
∂/

2

(
δZ̃0†

+ δZ̃0
)
ωL + i

∂/

2

(
δZ̃0∗

+ δZ̃0T
)
ωR

−
(

1
2

δZ̃0T
N∗Y N† +

1
2
N∗Y N†δZ̃0 +N∗δY N†

)
ωL

−
(

1
2

δZ̃0†
NY †NT +

1
2
NY †NTδZ̃0∗

+NδY †NT
)
ωR

]
×
(
χ̃0

1

χ̃0
2

)
. (68)

where the matrix N rotates the neutralino mass matrix
into diagonal form according to (10). The mass mχ̃0

1
of the

lightest neutralino χ̃0
1, that will be under excellent experi-

mental control, may be chosen to define the remaining U(1)
gauginomass parameterM1. Themasses of the heavier neu-
tralinos are thereafter fixed uniquely by the Higgs/higgsino
and gaugino parameters µ and M2,1. Again, the elements
of the Z̃0 wave-function renormalization matrix can be ad-
justed such that the elements of the neutralino propagator
matrix are diagonal with unit residues of the mass poles
for on-shell momenta.

In the case of CP conservation, the renormalization of
the Higgs/higgsino parameter µ and the gaugino parame-
ters M1 and M2 may be cast in the following form:

δM2 =
[
1
2
(mχ̃±

2
µ−mχ̃±

1
M2) 	e

{
mχ̃±

1
Σ±L

11 (m2
χ̃±

1
)

+ mχ̃±
1
Σ±R

11 (m2
χ̃±

1
) + 2Σ±SL

11 (m2
χ̃±

1
)
}

+
1
2
(mχ̃±

1
µ−mχ̃±

2
M2) 	e

{
mχ̃±

2
Σ±L

22 (m2
χ̃±

2
)

+ mχ̃±
2
Σ±R

22 (m2
χ̃±

2
) + 2Σ±SL

22 (m2
χ̃±

2
)
}

+ M2 δM2
W + µ δ

(
M2

W sin 2β
) ]

/ (µ2 −M2
2 ), (69)

δµ =
[
1
2
(mχ̃±

2
M2 −mχ̃±

1
µ) 	e

{
mχ̃±

1
Σ±L

11 (m2
χ̃±

1
)

+ mχ̃±
1
Σ±R

11 (m2
χ̃±

1
) + 2Σ±SL

11 (m2
χ̃±

1
)
}

+
1
2
(mχ̃±

1
M2 −mχ̃±

2
µ) 	e

{
mχ̃±

2
Σ±L

22 (m2
χ̃±

2
)

+ mχ̃±
2
Σ±R

22 (m2
χ̃±

2
) + 2Σ±SL

22 (m2
χ̃±

2
)
}

+ µ δM2
W +M2 δ

(
M2

W sin 2β
) ]

/ (M2
2 − µ2), (70)

δM1 =
1
N2

11

[
	e

{
mχ̃0

1
Σ0L

11

(
m2

χ̃0
1

)
+Σ0SL

11

(
m2

χ̃0
1

)}
− N2

12 δM2 + 2N13N14 δµ (71)

+ 2N11 [N13 δ (MZsW cosβ) −N14 δ (MZsW sinβ)]

+ 2N12 [N13 δ (MZcW cosβ) −N14 δ (MZcW sinβ)]
]
,

which is in agreement with [41]. Here the following de-
composition of the chargino/neutralino self-energies has
been used:

Σχ
ij(p) = p/ωLΣ

χL
ij (p2) + p/ωRΣ

χR
ij (p2)

+ωLΣ
χSL
ij (p2) + ωRΣ

χSR
ij (p2). (72)

The combinations of self-energies in (69)– (71) are equiva-
lent to the counterterms of the on-shell chargino and neu-
tralino masses,

δmχ̃±
k

=
1
2
	e {mχ̃±

k
Σ±L

kk (m2
χ̃±

k

) (73)

+ mχ̃±
k
Σ±R

kk (m2
χ̃±

k

) + 2Σ±SL
kk (m2

χ̃±
k

)
}

[k = 1, 2],

δmχ̃0
1

= 	e
{
mχ̃0

1
Σ0L

11 (m2
χ̃0

1
) +Σ0SL

11 (m2
χ̃0

1
)
}
. (74)

Once the two χ̃±
1,2 chargino masses and the χ̃0

1 mass are
fixed, the remaining heavier neutralino masses are shifted
by finite amounts relative to the Born terms [which, by
definition, are the eigenvalues of the renormalized mass
matrix [35,41]],

mχ̃0
k

−mBorn
χ̃0

k
= −	e

{
mχ̃0

k
Σ0L

kk (m2
χ̃0

k
) +Σ0SL

kk (m2
χ̃0

k
)
}

+ (N∗δY N†)kk [k = 2, 3, 4]. (75)

The cancellation of the divergences between the neutralino
self-energies and the mass matrix counterterm δY in this
expression is a non-trivial check of the method.
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4.1.4 Higgs mixing tan β

At tree level, the Higgs mixing parameter tanβ is deter-
mined by three soft SUSY breaking parameters, the diag-
onal mass parameters m2

1 and m2
2 as well as the Hu–Hd

mixing termm2
3, that is connected with the soft parameter

Bµ. They define the bilinear part of the scalar potential
of the two Higgs doublets,

Hu =
(

φ+
u

vu + 1
2

√
2(φu + iρu)

)
and

Hd =
(
vd + 1

2

√
2(φd + iρd)

−φ−
d

)
, (76)

Vbilin = m2
1

(
1
2
φ2

d +
1
2
ρ2
d + |φ−

d |2
)

+ m2
2

(
1
2
φ2

u +
1
2
ρ2
u + |φ+

u |2
)

(77)

+ m2
3

(
φuφd + ρuρd + φ+

u φ
−
d + φ+

u
∗
φ−

d
∗)
.

The three soft SUSY breaking parameters can be reex-
pressed in terms of the vacuum expectation values vu and
vd, and the pseudo-scalar massMA. The tree-level relation
tanβ = vu/vd is modified by higher-order corrections to
the Higgs potential and needs to be renormalized.

Various renormalization prescriptions have been pro-
posed in the literature, which however do not lead to sat-
isfactory solutions on all accounts [43]. Renormalization
prescriptions that are derived from the Higgs potential
introduce dangerously large corrections to tanβ, which
effectively invalidate the convergence of the perturbation
series. Other methods impose the renormalization condi-
tion that the Goldstone bosons not mix with the physical
Higgs bosons for on-shell momenta [44], but the value of
tanβ in these schemes depends on the gauge choice.

Alternatively, one may define tanβ in higher orders
by relating it to a specific physical process. However, any
definition of tanβ through a physical process is afflicted
with technical difficulties that are introduced by the par-
ticular process. Moreover, the value of tanβ may be ex-
tracted from different observables, for example from Higgs
decays [43, 45], Higgs production processes [46], or from
the cross-sections for mixed chargino pair production for
moderate values of tanβ � 10 [10], while for large tanβ
the τ polarization in τ̃ decays provides an attractive oppor-
tunity [47]. Any such approach does not lead to a unique
and universal choice for the renormalization of tanβ.

In the following analysis we adopt the most convenient
solution by just subtracting the divergent part in the DR
scheme from the unrenormalized parameter to define the
renormalized parameter. Without loss of generality, the
universal DR counterterm for tanβ may be extracted from
the mixing self-energy of the Z-boson and the pseudo-
scalar Higgs boson A0, with the natural choice for the
renormalization scale being the A0-mass MA:

tanβ → tanβ + δ tanβ,

with

δ tanβ = − 1
2 cos2 βMZ


m ΣA0Z(M2
A)
∣∣
div , (78)

with the subscript “div” indicating that only the divergent
part of the self-energy is retained.

Though being process-independent, this definition is
not perfect either as the value depends on the chosen gauge.
[By accident it remains independent on the gauge fixing
parameter ξ in the Rξ gauge to one-loop order.] Of course,
the predictions for physical observables remain gauge inde-
pendent as the gauge dependence of tanβ|DR is neutralized
by equivalent terms in the amplitudes themselves.

4.2 Effective Yukawa couplings

In general, quantum corrections are reduced with increas-
ing mass of the virtual particles inside the loops, as gener-
ally expected by the uncertainty principle and formalized
by the decoupling theorem [48]. However, in theories with
broken symmetries, these corrections may grow to loga-
rithmically large values if the mass splitting in the particle
multiplets is large. High mass scales in theories with broken
symmetries can thus manifest themselves in the radiative
corrections to precision observables at much lower ener-
gies. A classical example for this phenomenon is provided
by the mass splitting in the top-bottom iso-doublet of the
standard model [49] which strongly affects the ρ parameter
in the ratio of W - and Z-boson masses.

In theories with broken supersymmetry such a phe-
nomenon arises if the splitting between the masses of SM
particles and some of the SUSY partners becomes very large
[such scenarios are realized, for instance, in focus point the-
ories [50]], leading to superoblique corrections that grow
logarithmically with the mass splitting [16,17]. The split-
ting affects in particular the relation between the gauge
couplings and the associated Yukawa couplings. In parallel
to the bare couplings, the renormalized Yukawa couplings
can naturally be defined to be the same as the gauge cou-
plings at the renormalization point if supersymmetry is
broken softly. Accordingly, in the on-shell renormalization
scheme the renormalized Yukawa couplings are defined to
be equal to the renormalized on-shell gauge couplings, so
that the renormalized Lagrangian manifestly reflects the
supersymmetry [modulo the soft-breaking terms]. Never-
theless, the loops will modify in toto the two types of
vertices associated with the two couplings differently in
physical amplitudes evaluated near the light SUSY scale,
or equivalently the electroweak scale. In a more intuitive
language, the running of the two couplings with energy
from the high SUSY mass scale down to the low SUSY
mass scale (or electroweak scale) is different [16,17].

These effects are rooted in the self-energies of the gaug-
ino lines, shown in Fig. 11a,b for bino and wino lines, re-
spectively. In parallel to the iso-multiplets of the stan-
dard model, the non-decoupling corrections arise from large
mass splittings within the supersymmetric particle spec-
trum, for example for exceedingly high squark masses. The
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B̃B̃

q̃

q

W̃ 0W̃ 0

q̃

q

a b

Fig. 11. Quark–squark loop corrections a to the U(1) and b to
the SU(2) neutral gaugino self-energies

wave-function renormalization associated with these di-
agrams can be projected onto effective U(1) and SU(2)
Yukawa couplings, ĝ′

eff and ĝeff , defined near the light
SUSY/electroweak scale Mew; in the same way as the
wave-function renormalization Zγ of the photon defines
the effective electromagnetic coupling eeff =

√
Zγ e.

The self-energy correction derived from Fig. 11a for the
U(1) bino propagator is given, in leading logarithmic order
of the ratio between the large SUSY and the electroweak
scale, by

Σ0
B̃,log(p) = −p/ g′2

16π2

11
2

lnM2
Q̃
/M2

ew. (79)

This may be reinterpreted as a shift of the effective U(1)
Yukawa coupling,

ĝ′2
eff

ĝ′2
0

= 1 +
g′2

16π2

11
2

lnM2
Q̃
/M2

ew (80)

in leading logarithmic approximation, in relation to the
bare Yukawa/gauge couplings ĝ′

0 = g′
0. The effective U(1)

gauge coupling g′2
eff,log can be introduced in parallel. It is

identical to the renormalized gauge coupling g′ in the on-
shell scheme,

g′2
eff

g′2
0

= 1 +
g′2

16π2

11
6

lnM2
Q̃
/M2

ew. (81)

The ratio of U(1) Yukawa to gauge coupling is therefore
given effectively by

ĝ′2
eff

g′2
eff

= 1 +
g′2

16π2

11
3

lnM2
Q̃
/M2

ew. (82)

Thus, even in spite of the fundamental identity of the renor-
malized Yukawa and gauge couplings in supersymmetric
theories in soft SUSY breaking scenarios, we find neverthe-
less logarithmically enhanced departures from universality
in effective couplings at the electroweak scale if the mass
splitting in the supersymmetric multiplets is large.

The SU(2) Yukawa and gauge couplings can be treated
analogously. From the wino self-energy in Fig. 11b the effec-
tive SU(2) Yukawa coupling ĝ2

eff can be defined. Together
with the on-shell renormalization of the SU(2) gauge cou-
pling g, this leads to

ĝ2
eff

g2
eff

= 1 +
g2

16π2 3 lnM2
Q̃
/M2

ew (83)

for the ratio of the two effectiveYukawaand gauge couplings
in leading logarithmic order.

The logarithmic growth of the one-loop corrections will
later be analyzed numerically when the production of se-
lectron pairs, involving the Yukawa couplings in t-channel
neutralino exchange amplitudes, will be compared with the
production of smuon pairs in detail.

4.3 Anomalous thresholds

The rich pattern of different masses in supersymmetric the-
ories gives rise to anomalous threshold singularities [18,19]
in vertex and box graphs [which play no role in gen-
eral in the standard model7]. While the vertex graph for
e+e− → µ̃+µ̃− in Fig. 12 generates a normal threshold
singularity when the energy

√
s passes the threshold for

χ̃0
1χ̃

0
4 production, an additional anomalous singularity oc-

curs for a special set of mass values mχ̃0
1
< mµ̃ < mχ̃0

4
at

the kinematical point

s = sa ≡
m2

µ̃(m2
χ̃0

4
−m2

χ̃0
1
)2

(m2
µ̃ −m2

χ̃0
1
)(m2

χ̃0
4
−m2

µ̃)
. (84)

Here, as before, the muon mass has been neglected. The
singularity can be traced back to a zero value of the denom-
inator function D in the vertex amplitude I, in a configu-
ration where all intermediate particles in the loop become
on-shell at the same time,

I =
∫

d4q
f(q, pµ̃+ , pµ̃−)

D
, (85)

D = q2
[
(q + pµ̃+)2 −m2

χ̃0
1

] [
(q + pµ̃+ − pµ̃−)2 −m2

χ̃0
4

]
,

where f is a polynomial function. Even though the singu-
larity is mild and can be integrated over, it leaves its trace
in a discontinuity of the cross-section.

The two different types of threshold singularities for
the vertex introduced above are exemplified in Fig. 13 and
Fig. 14. The normal threshold singularity at

√
sn in Fig. 13

is generated by the non-zero onset of the imaginary part of
the 2-point function B0(s,m2

χ̃0
1
,m2

χ̃0
4
), corresponding to a

kink in the real part. In contrast, the anomalous threshold
at

√
sa in Fig. 14 is generated by the C0(s, m2

µ̃ , m2
µ̃ , m2

χ̃0
1
,

e−

e+

µ−

µ+

χ0
1

χ0
4

µ

Fig. 12. Vertex graph for the process e+e− → µ̃+µ̃− that bears
an anomalous threshold for the mass hierarchy mχ̃0

1
< mµ̃ < mχ̃0

4

7 As an exceptional case, anomalous thresholds do occur in
W+W − scattering in the standard model [59].
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√
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m2
χ̃0

4
, 0) function, characterized by a kink in the imaginary

part which leads, if integrated out in a dispersion relation,
to a step in the real part [18].

4.4 Production cross-sections

Mediated by the pure s-channel γ/Z exchange mechanisms,
the production of smuon pairs is the most basic process
of supersymmetric theories at e+e− colliders. The results
for the production cross-section will therefore be presented
for this process first. Subsequently we expand the analy-
sis to selectron pair production in e+e− and e−e− col-
lisions which involve also t-channel neutralino exchange
mechanisms. They will serve as an excellent instrument to
measure the electron–selectron–gaugino SU(2) and U(1)
Yukawa couplings, which will be analyzed at the end of
this section.

4.4.1 Smuon production

After the renormalized transition amplitude for the process
e+e− → µ̃+µ̃− is constructed following the way outlined in
the last section, the experimental parameters must be de-
fined properly. We use the on-shell definition for all masses,
while the electromagnetic coupling α will be evaluated at
the scale of the center-of-mass energy Q =

√
s, so that

the large logarithmic corrections ∝ log s/m2
f from light

fermion loops in the running of α(Q2) are absorbed into
this definition.

The resulting amplitude is UV finite but still infrared
divergent. This divergence is removed by adding the con-
tributions from photon radiation in the initial and final
states to the cross-section. The virtual and real QED cor-
rections form a gauge-invariant subset separate from the
other virtual loop corrections.
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Initial-state QED corrections. Adding to the loop-corrected
cross-section the contribution of soft photon radiation from
the initial lepton lines, the ensuing cross-section factorizes
into the Born cross-section and a radiation coefficient that
depends on the cut-off ∆E of the soft photon energy (de-
fined in the CMS frame),

dσvirt+soft
ISR = dσBorn

α

π
(86)

×
[
log

(∆E)2

s

(
log

s

m2
e

− 1
)

+
3
2

log
s

m2
e

− 2 +
π2

3

]
.

This ∆E dependence is removed if the radiation of hard
photons is added to the cross-sections. We are still left, how-
ever, with the logarithmic enhancement of the cross-section
from collinear radiation ∝ log s/m2

e. In leading logarith-
mic order the photon radiation effectively just reduces the
CMS energy available for the final-state particles [51]. This
is described by the convolution

dσLL(s) =
∫ 1

4m2
µ̃/s

dz ΓLL
ee (2α, z, s)σBorn(zs) (87)

of the Born cross-section with the radiator function [52]

ΓLL
ee (α, z,Q2) = δ(1 − z) +

α

2π
log

Q2

m2
e

1 + z2

1 − z

∣∣∣∣
z≤1−ε

(88)
(that can easily be generalized to higher orders [53]). The
variable z denotes the energy fraction left to the elec-
tron/positron parton after the radiation of the collinear
photon. The additional non-collinear photon radiation is
treated numerically by applying Monte Carlo integration
techniques, with fast convergence after the leading loga-
rithmic order is subtracted analytically, as outlined above.
Final-state QED corrections. After adding up the vertex
correction plus the final-state photon radiation, the cross-
sections for soft photons factorizes again in the Born cross-
section and a radiation function that depends on the photon
cut-off energy ∆ E,

dσvirt+soft
FSR = dσBorn

α

π

×
{

log
4(∆E)2

m2
µ̃

[
−1 +

1 + β2

2β
log

1 + β

1 − β

]
− 2 +

1
β

log
1 + β

1 − β

+
1 + β2

β

[
log

1 + β

1 − β

(
1 − 1

2
log

4β2

1 − β2

)
+

π2

3
+ Li2

1 − β

1 + β
− Li2

2β
1 + β

]}
. (89)

Since the smuon mass is large, the velocity β = (1 −
4m2

µ̃/s)
1/2 of the smuons in the final state stays sufficiently

away from unity not to generate collinear singularities. The
∆E dependence is neutralized when the hard photon con-
tributions are added and integrated out (numerically) to
calculate the total cross-section.

The initial- and final-state QED corrections do not in-
terfere in the total cross-section as a consequence of CP
invariance. However, the amplitudes do in general interfere
in the calculation of final-state distributions.

In general it is not possible to divide the virtual loop
corrections for slepton pair production into SM-like cor-
rections and genuine supersymmetric corrections.However,
for the special case of µ̃R pair production, a gauge-invariant
and UV-finite subset of SM-like loop contributions can be
defined, including all diagrams where a SM fermion, gauge
boson or the lightest Higgs boson is attached to the tree-
level graphs, and taking the mixing angle α of the CP -even
Higgs bosons to be α = β − π/2. The remaining loop con-
tributions can then be interpreted as the genuine virtual
SUSY corrections. For this contribution we find relative
corrections of the order of 1%, as demonstrated in Fig. 15,
which nicely illustrates the onset of normal and anomalous
thresholds in vertex and box diagrams with rising energy.
The variation of the corrections across the [M1, µ] and
[M2, µ] planes has been studied in Fig. 16a,b.

All crucial elements have now been collected to present
the overall correction of the total cross-section for µ̃R pair
production. The parameters of the Snowmass reference
point SPS1a have been adopted again to illustrate the final
results. As a function of energy the correction normalized
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Fig. 15a,b. Corrections from genuine SUSY loops to the cross-
section for e+e− → µ̃+

Rµ̃−
R relative to the Born cross-section. The

corrections are separated into vertex and self-energy corrections
a and box corrections b . The kinks are generated by normal
(single arrows) and anomalous thresholds (double arrows). The
values are given for the SPS1a scenario
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Fig. 16a,b. Dependence of the relative one-loop corrections
(σα − σBorn)/σBorn to µ̃R pair production on the gaugino pa-
rameters M1, M2 and µ for

√
s = 500 GeV. The values of the

other parameters are taken from the SPS1a scenario

to the Born cross-section, defined for the running electro-
magnetic coupling, is displayed in Fig. 17. Moreover, the
total correction is broken down to initial-state plus final-
state QED corrections, the total SM corrections including
just lines of SM particles in the virtual corrections, and
the genuine SUSY corrections introduced above. The real
photon radiation is treated in a fully inclusive way, i.e. both
soft and hard photon emission are included. The main con-
tribution to the corrections can trivially be traced back to
the universal factorizable QED terms which are logarith-
mically enhanced. However, after these dominant effects
are subtracted, the remaining QED, weak-loop and genuine
SUSY contributions still amount to a level of 5%. Thus pre-
cision measurements of the total cross-sections for slepton
pair production, that may reach a level of a few per-mille,
require the one-loop radiative corrections to be included
properly. In this way a satisfactory understanding of the
expected experimental results will be achieved.
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Fig. 17. Electroweak corrections to the cross-section for
e+e− → µ̃+

Rµ̃−
R , relative to the improved Born cross-section.

Besides the full O(α) result, contributions from different sub-
sets of diagrams are shown. Input parameters taken from the
SPS1a scenario

4.4.2 Selectron production

In comparison to smuon pair production, the loop calcu-
lations to selectron pair production are significantly more
complex, the reason being twofold. An extra technical chal-
lenge is introduced by the additional t-channel neutralino
exchange mechanisms. These mechanisms also give rise to
delicate problems for gauge-invariant subdivisions of di-
agram classes and the subsequent renormalization proce-
dures. The origin of the problems is the continuous flow
of charges from the initial to the final states while, at the
same time, the Fermi/Bose character of the charge line
changes in the electron–selectron–neutralino Yukawa ver-
tex – a SUSY vertex sui generis. Related problems were
encountered first in WW pair production via t-channel
neutrino exchange as opposed to muon pair production in
e+e− collisions.

A transparent example is provided by the process e−
Re

−
R

→ ẽ−
R ẽ

−
R which is built up solely by t-channel neutralino

exchanges. These are as follows.
(1) Closed loops of leptons and sleptons implanted in the
virtual neutralino lines form a gauge-invariant subset of
diagrams, and so do loops of quarks and squarks.
(2) The diagrams involving massive gauge bosons, Higgs
bosons, gauginos and higgsinos however cannot be sepa-
rated from the QED loops in a gauge-invariant manner
anymore. This follows from a simple argument. The set of
photonic corrections to the electron–selectron–neutralino
Yukawa vertex is not UV finite, but only so after being sup-
plemented by the corresponding virtual photino diagram.
Since the photino is not a mass eigen-state, this amplitude
is closely linked to the remaining degrees of freedom in
the electroweak sector. Thus only the total set of gauge
boson/Higgs and gaugino/higgsino electroweak diagrams
is gauge invariant.

Nevertheless, as expected on general grounds, soft real
photon radiation regularizes the infrared divergences gen-
erated by the virtual photon diagrams, and the selectron
pair cross-section for soft photon radiation factorizes again
into the Born term times a radiator function. In leading
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logarithmic order of the soft photon energy ∆E,

dσvirt+soft,log
ISR+FSR = dσBorn

α

π
log

(∆E)2

s

×
{

log
s

m2
e

+ 2 log 4
[
1 + log

m2
em

2
ẽ

(m2
ẽ − t)(m2

ẽ − u)

]
+

1 + β2

2β
log

1 + β

1 − β

}
, (90)

where t and u are the invariant momentum transfers in the
t-/u-channel.

In the same way, in leading logarithmic order, collinear
photon radiation from the initial beam line can be cast in
the convoluted form of (87) and (88). Note however that
virtual initial- and final-state radiation cannot (even not
theoretically) be disentangled anymore.

The influence on the parameters of the Higgs (and hig-
gsino) sector is rather mild since the couplings of these
fields to electron-type lines is negligible. Effects of Higgs
bosons on the self-energies of the Z boson and the neu-
tralinos may naively be expected non-negligible. However,
the leading effects of the Higgs boson spectrum on these
parameters are only proportional to the logarithm of the
mass ratios of two Higgs bosons, e.g. ∝ logMA/MH . As a
result, these contributions are naturally suppressed.

The corrections to the RG improved Born cross-sections
for selectron ẽR pairs in e+e− and e−e− collisions are de-
picted in Fig. 18a,b. In addition to the full corrections, the
results are broken down to the individual contributions
from closed loops of leptons/sleptons, quarks/squarks and
the remaining corrections involving gauge bosons, Higgs
bosons, gauginos and higgsinos, as well as the QED cor-
rections.

As before, we shall study the influence of the corrections
induced through the supersymmetry sector at some detail.
Even though the genuine SUSY loops are intimately corre-
lated with the standard model loops, the higher-order ef-
fects vary widely over the supersymmetry parameter space,
measuring the influence of the SUSY degrees of freedom
beyond the trivial effects due to the masses and couplings
of the selectrons produced in the final state.

A significant influence on the one-loop corrections arises
from the electroweak gaugino sector, characterized by the
parametersM1,M2 and µ. As an example, the dependence
of the one-loop corrections relative to theBorn cross-section
onM2 andµ is shown inFigs. 19a,b.The effects aremaximal
for small µ due to the higgsino loops affecting theW and Z
self-energies. [The rapid changes along the diagonalM2 = µ
are a consequence of the level crossings between the χ̃0

i
states which induces drastic changes in the couplings to
the electroweak gauge bosons.]

As outlined earlier, big mass differences between the
SUSY sfermions and the corresponding SM fermions gen-
erate large effective Yukawa couplings and thus large su-
peroblique corrections to selectron production. This can
nicely be illustrated by comparing the squark loop effect on
the smuon pair cross-sections with the selectron pair cross-
section mediated by t-channel neutralino diagrams. Beyond
the low-mass threshold region, the squark contributions are

a

400 500 600 700 800 900 1000

-10

-5

0

5

10

15

σ
α

−
σ

B
or

n

σ
B

or
n

[%
]

√
s [GeV]

O(α) (s)lepton loops

O(α) (s)quark loops

remaining O(α) incl. QED

complete O(α) result

e+e− → ẽ+
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Fig. 18a,b. Electroweak corrections to the cross-sections a for
e+e− → ẽ+

R ẽ−
R and b for e−e− → ẽ−

R ẽ−
R , relative to the improved

Born cross-section. Besides the full O(α) result, contributions
from different subsets of diagrams are shown. Input parameters
taken from the SPS1a scenario

rising linearly in the logarithm of the squark masses for se-
lectron production while approaching a plateau for smuon
production, where gaugino/higgsino lines are absent at the
Born level; cf. Figs. 20a,b.

4.4.3 The identity of SUSY Yukawa and SM gauge couplings

Selectron-pair production in e+e− collisions and, particu-
larly, in e−e− collisions are excellent channels for testing
the identity of the SU(2) and U(1) SUSY Yukawa couplings
and the corresponding SM gauge couplings. Selectron pro-
duction in e−e− collisions is mediated solely by neutralinos,
and the same is true for initial-state leptons of equal he-
licities in e+e− channels, as is evident from Table 1.

Asymptotically, the t-channel exchange is the dominant
mechanism. As a consequence of unitarity, the logarithmi-
cally leading part of the cross-section for high energies is
independent of the neutralino mixing parameters after all
neutralino exchanges in the t-channel are added:

σ
[
e+ e− → ẽ+R ẽ

−
R

] s→∞−−→ ĝ′4

16π
log s
s

+ O
(

1
s

)
, (91)

σ
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−
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] s→∞−−→ (ĝ2 + ĝ′2)2

16π
log s
s

+ O
(

1
s

)
,

(92)
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Fig. 19a,b. Dependence of the relative one-loop corrections
(σα −σBorn)/σBorn to ẽ+

R ẽ−
R production a and ẽ−

R ẽ−
R production

b on the gaugino parameters M2 and µ for
√

s = 500 GeV.
The values of the other parameters are taken from the SPS1a
scenario

where ĝ and ĝ′ are the SU(2) and U(1) Yukawa couplings,
respectively. However, very large energies indeed would be
needed before the asymptotic behavior is reached in prac-
tice.

In this subsection we shall study the sensitivity of selec-
tron production to the Yukawa electron–selectron–gaugino
couplings and the errors expected experimentally. We as-
sume that the masses and mixing parameters of the neu-
tralinos have been pre-determined in chargino/neutralino
pair production, and we properly take into account the
expected errors in this sector. It is important to note that
the mixing parameters affecting the selectron production
cross-sections depend only on the gaugino/higgsino mass
parameters M1, M2 and µ. These parameters can be de-
termined in the MSSM from the precision measurements
of three chargino and neutralino masses, for example, χ̃±

1 ,
χ̃±

2 and χ̃0
1, but independently of the chargino/neutralino

cross-sections [which would re-introduce the Yukawa cou-
plings otherwise].
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breaking squark mass parameter MQ̃ [assumed to be universal
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R production and b ẽ−
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The values of the other parameters are taken from the SPS1a
scenario, and the CMS energy is set to

√
s = 500 GeV

To derive the size of the errors on the Yukawa cou-
plings, we perform this study in the one-loop approxima-
tion. Proper errors will be associated to all terms in the
improved Born approximation. However, the higher-order
corrections can be calculated for the ideal values of the
parameters in the loops since their errors would affect the
errors in the Yukawa couplings only to second order which
is consistently neglected. Iterative procedures may later be
employed for the next-level improvements.

The selectron production cross-sections are computed
using the beam polarizations and cuts introduced in
Sect. 3.3, and with beamstrahlung and ISR switched on.
Besides enhancing the statistics, the polarization of both
the e− and e+ beams is essential for identifying the chiral
quantum numbers of the selectrons [30]. Since only total
cross-section measurements will be considered here, the
one-loop corrections can be included by means of a sim-
pleK-factor. Besides the neutralino parameters, the cross-
sections crucially dependon the selectronmasses,which can
be extracted from threshold scans; cf. Table 4. For the neu-
tralino/chargino masses the following errors are assumed:
δmχ̃0

1
= 50 MeV, δmχ̃0

2
= 80 MeV, δmχ̃±

2
= 3000 MeV,

which are based on a coherent analysis of LHC and LC
mass measurements [55]. From these masses, the gaugino
and higgsino mass parameters can be derived, in models



508 A. Freitas et al.: Slepton production at e+e− and e−e− linear colliders

a e+e−,
√

s = 500 GeV, L = 500 fb−1 b e−e−,
√

s = 500 GeV, L = 50 fb−1

-0.004 -0.002 0 0.002 0.004

-0.02

-0.01

0

0.01

0.02

0.03

��
��
�

�

������
� �

���

���

-0.004 -0.002 0 0.002 0.004

-0.02

-0.01

0

0.01

0.02

0.03

��
��
�

�

������
� �

���

���

Fig. 21a,b. 1σ bounds on the determination of the supersymmetric U(1) and SU(2) Yukawa couplings ĝ′ and ĝ from selectron
cross-section measurements. The two plots compare the information obtained from the cross-sections σRR = σ[e+ e− → ẽ+

R ẽ−
R ]

and σRL = σ[e+ e− → ẽ±
R ẽ∓

L ] in the e+e− mode a as well as σRR = σ[e− e− → ẽ−
R ẽ−

R ] and σLL = σ[e− e− → ẽ−
L ẽ−

L ] in the e−e−

mode b, respectively. Parameters taken from the SPS1a scenario

with two Higgs/higgsino doublets, to which we restrict our
general analysis. These parameters determine the elements
of the chargino andneutralinomixingmatrices including es-
timates of their errors. An error of 1% is assigned to the po-
larization degree of the incoming electron/positron beams.

As discussed in Sect. 3, the L- and R-selectron states can
be discriminated by considering the decay of the selectron
ẽL into the neutralino χ̃0

2, followed by the decay chain χ̃0
2 →

τ+τ− χ̃0
1 and leading to the final states listed in Table 4.

It is assumed that each tau pair can be identified with
an efficiency of ετ = 80%. In addition a global acceptance
factor of εdet = 50% is assigned for potential detector effects
that are not simulated in this study.

Taking into account all these statistical errors and sys-
tematic uncertainties, the constraints on the SU(2) and
U(1) Yukawa couplings of the MSSM, ĝ and ĝ′, are pre-
sented in Fig. 21a,b for the SPS1a scenario. The results
are based on 500 fb−1 data accumulated in e+e− collisions
at 500 GeV, and 50 fb−1 in e−e− collisions, respectively.
From the overlap regions the following expected 1σ errors
are obtained:

e+e− :
δĝ′

ĝ′ ≈ 0.18%,
δĝ
ĝ

≈ 1.2%, (93)

e−e− :
δĝ′

ĝ′ ≈ 0.23%,
δĝ
ĝ

≈ 0.9%. (94)

As is evident from these results, the expected sensitivi-
ties for the measurement of the Yukawa couplings in the
e+e− and e−e− modes are similar. While e− polarization
is essential for disentangling the SU(2) and U(1) couplings,
the additional e+ polarization reduces the errors by a fac-
tor of about 1.4 for a degree of 50%. The result for the
determination of the U(1) bino Yukawa coupling is compa-
rable to previous studies [14,54], while being slightly more

precise than analyses based on the differential selectron
cross-section [16].

The precision on the Yukawa couplings expected from
selectron pair production compares favorably with corre-
sponding measurements in chargino/neutralino pair pro-
duction, for which the errors are of similar though slightly
larger magnitude [10,54].

Thus it has turned out that one of the basic properties of
supersymmetric theories, the identity of Yukawa and gauge
couplings, can be tested with accuracies down to the per-
cent and even per-mille level in selectron pair production
at e+e− and e−e− colliders.

5 Conclusions

We have presented in this report the theoretical basis for
high precision studies of the supersymmetric partners to
muons and electrons, the scalar smuons and selectrons,
at future e+e− and e−e− linear colliders. The theoreti-
cal material elaborated in the study is complemented by
phenomenological analyses of the masses and couplings of
these particles.
Masses. A central target of experiments exploring the prop-
erties of supersymmetric particles is the measurement of
their masses. The experimentally observed particle masses
are connected with mass parameters in the SUSY La-
grangian that encode the breaking of supersymmetry and
are thus directly related to the basic structure of the su-
persymmetric theory at the TeV scale. Extrapolating these
parameters to high scales will allow us to reconstruct the
fundamental supersymmetric theory.

Precision measurements can be performed in the clean
environment of high-energy lepton colliders operating with
polarized beams at high luminosity. The masses of scalar
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sleptons, selectrons in particular, can be determined with
unparalleled precision from threshold scans as the excita-
tion curves rise steeply with the energy above threshold,
either with the third power in the velocity for smuons or
even linearly for selectron channels.

As a consequence, accurate theoretical predictions for
the pair production are required to match the expected
experimental accuracies. The two theoretical key points in
this context, non-zero width effects and Coulombic Som-
merfeld rescattering effects, have been elaborated in detail.
Special attention has been paid to preserving gauge invari-
ance in truncated subsets of the entire ensemble of Feyn-
man diagrams describing the final states after the resonance
decays. The remaining contributions of this ensemble are
taken into account as part of the SUSY backgrounds, with
the additional backgrounds from SM sources added on.

Based on this procedure, a phenomenological analy-
sis of slepton masses in threshold scans was performed,
improving significantly on the theoretical reliability com-
pared with earlier simulations. While the excitation curves
are characterized by their distinct rise near the thresholds,
including sub-dominant backgrounds reduces, somewhat,
the precision expected from previous studies. Neverthe-
less, a precision of about a few 100 MeV can be expected
for slepton masses around 200 GeV in general, correspond-
ing to a relative error at the per-cent to per-mille level.
For the R-selectron mass, an accuracy of even 0.2 × 10−3

can be obtained from threshold scans in the e−e− mode,
benefiting from the exceptionally sharp rise of the S-wave
selectron excitation.

Moreover, the threshold scans of selectron pair produc-
tion can also be exploited to extract the decay widths to
accuracies between 10 and 20%.
Yukawa couplings. A key character of supersymmetric the-
ories is the identity between the Yukawa couplings ĝ(ff̃ Ṽ )
of the fermions, their superpartners and the gauginos, and
the gauge couplings g(ffV )/g(f̃ f̃V ) of the fermions and
sfermions to the gauge bosons. The identity of these cou-
plings is crucial for the natural solution of the fine-tuning
problem. It must hold not only in theories with exact super-
symmetry but also in theories incorporating the breaking
of supersymmetry, as to ensure the stable extrapolation of
the system to energies near the Planck scale – one of the
defining raisons d’être for supersymmetry.

In passing it may be noticed that the identity of the
gauge couplings themselves in the SM and SUSY sectors
can be tested at the per-cent level. Smuon pair production
is particularly suited for extracting the gauge couplings
in the SUSY sector as this process is mediated solely by
s-channel γ and Z-boson exchanges.

In contrast, the SUSY Yukawa couplings of the elec-
troweak sector may be probed in selectron pair production
due to the neutralino t-channel exchange contribution. By
carefully analyzing statistical errors and systematic uncer-
tainties we could demonstrate that these couplings can be
extracted from measurements of the total cross-sections in
the high-energy continuum with a precision of better than
the per-cent level. In particular, this slightly exceeds the ac-

curacy that can be achieved by other methods, for example
in the analysis of chargino/neutralino pair production.

Matching this expected experimental accuracy with its
theoretical counterpart requires the calculation of the cross-
sections to per-cent accuracy. For this purpose the complete
next-to-leading order one-loop SUSY electroweak radiative
corrections were calculated for the production of on-shell
smuon and selectron pairs. The corrections were found to
be sizable, being of the order of 5–10%, with genuine SUSY
corrections accounting for about 1% in µ̃R pair production,
where these corrections can be defined unambiguously and
separated consistently.

In all examples analyzed in this report, the production of
scalar electrons in e+e− annihilation has been compared
to the corresponding processes in e−e− scattering. The
e−e− mode turns out to be particularly favorable for the
measurement of the selectron masses in threshold scans.
In addition it can provide complementary information on
the selectron Yukawa couplings.

The detailed analytical expressions for the slepton pair
production cross-sections are too lengthy to be reported
here in writing. The results are implemented in computer
programs that return the cross-sections for smuons and
selectrons to one-loop order for whatever set of Lagrangian
parameters in the minimal supersymmetric standard model
MSSM is chosen. The computer codes are available from the
web at http://theory.fnal.gov/people/afreitas/. [Technical
information on installing and running the programs are
given at the web site.]

The theoretical analysis presented in this report for
smuons and selectrons is one of the cornerstones for pre-
cision analyses of the supersymmetry sector in particle
physics. The precision that is expected to be achieved in
future linear collider experiments requires the analysis of
many different channels in parallel – sleptons, charginos/
neutralinos and squarks/gluinos. The parameters of all
these states affect mutually the theoretical predictions at
the one-loop level so that all the associated production
channels must be analyzed simultaneously. Such an overall
analysis demands complementary and coherent experimen-
tal action at lepton and proton colliders – a program for
which the present analysis is a crucial building block8. This
ensures finally a self-consistent picture of the SUSY sector
at the phenomenological level.

Beyond drawing a high-resolution picture of supersym-
metry at low energies, the precise determination of these
parameters provides the base for exploring the mechanism
of supersymmetry breaking and the reconstruction of the
fundamental supersymmetric theory, potentially at scales
near the Planck scale. In short, the high precision analyses
provide us with a telescope for exploring the structure of
physics at the scale of ultimate unification of genuine par-
ticle physics with gravity, as expected to be realized near
the Planck scale.

8 Such a comprehensive study is presently underway [56].
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Table 5. Mass spectrum in GeV of SUSY particles relevant for this study for the reference scenario
SPS1a [20]. The Higgs masses are given in Born approximation [square brackets] and radiatively
corrected

SUSY particles and masses
l̃R = ẽR/µ̃R 142.72
l̃L = ẽL/µ̃L 202.32
ν̃l = ν̃e /ν̃µ 185.99

τ̃1 132.97
τ̃2 206.29
ν̃τ 185.05

ũR 520.50
ũL 537.20
d̃R 520.11
d̃L 543.07

t̃1 375.74
t̃2 585.15
b̃1 488.01
b̃2 528.23

χ̃0
1 96.18

χ̃0
2 176.62

χ̃0
3 358.80

χ̃0
4 377.87

χ̃±
1 176.06

χ̃±
2 378.51

h0 [89.28] 122.71
H0 [394.07] 393.56
A0 [393.63] 393.63

Appendix

The theoretical results and the phenomenological analyses
presented in this report, have been based on the specific
reference scenario SPS1a for the MSSM, defined in the set
of the “Snowmass Points and Slopes” [20].

The SPS1a point is a typical mSUGRA scenario charac-
terized by fairly light sfermion masses. If realized in nature,
a wealth of experimental information would become avail-
able on this supersymmetric theory from a linear collider
operating in the first phase at energies up to about 1 TeV.

The SUSY parameters of SPS1a are defined at the GUT
scale for the following universal values:

m0 = 100 GeV, M1/2 = 250 GeV, A0 = −100 GeV,

tanβ = 10, µ > 0. (95)

The overall set is completed by the standard model pa-
rameters specified at the electroweak scale as

α(MZ) = 1/127.70, mt = 175 GeV, (96)

MZ = 91.1875 GeV, mb = 4.25 GeV, (97)

MW = 80.426 GeV, mτ = 1.777 GeV. (98)

The evolution of the soft SUSY breaking parameters (95)
down to the electroweak scale by means of the program
Isajet 7.58 leads to the weak-scale parameters listed in [24].
Uncertainties due to the implementation of the renormal-
ization group evolution are not relevant for the purpose of
the present study, since the MSSM parameters at the weak
scale are taken as the starting point for our analysis. Us-
ing the MSSM soft-breaking parameters from [24] together
with the SM parameters (96)–(98) the SUSY particles spec-
trum in Table 5 is obtained. The widths and branching
ratios of the particles involved in the decay chains of the
sleptons can be found in Table 2.

The staus, squarks and Higgs bosons only enter in the
loop corrections to smuon and selectron pair production.
The masses of the Higgs bosons in the loop contributions
must be evaluated at tree level, in order to ensure the can-
cellation of the gauge-parameter dependence in the next-
to-leading order result. On the other hand, some of the
background processes considered in Sect. 3.3 involve tree-
level Higgs boson exchanges. In order to get reliable predic-
tions for these processes, it is necessary to include the large
radiative corrections to the Higgs masses, which for this
purpose were calculated with the program FeynHiggs [57].

Added note

The SPS1a set of parameters generates the following pre-
dictions for the low-energy precision observables: BR[b →
sγ] = 2.7 ·10−4 and ∆(gµ −2)/2 = 17 ·10−10. The amount
of cold dark matter is, with Ωχh

2 = 0.18, still compatible
with WMAP data but somewhat on the high side if they
are supplemented by the ACBAR and CBI data.

Shifting the scalar mass parameter slightly downwards
tom0 = 70 GeV, but not altering any of the other universal
parameters in SPS1a, drives the value for the density of
cold dark matter to the central band of the data, Ωχh

2 =
0.126, without violating the bounds on BR[b → sγ] and
∆(gµ −2)/2 [58]. Slepton, chargino/neutralino masses and
branching ratios relevant for the present analysis change
within so limited a margin that none of the conclusions in
this report is affected to a significant amount.
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36. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Com-
mun. 60, 165 (1990); T. Hahn, Comput. Phys. Commun.
140, 418 (2001); T. Hahn, C. Schappacher, Comput. Phys.
Commun. 143, 54 (2002); T. Hahn, FeynArts 3 User’s
Guide (2001) [http://www.feynarts.de]
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